skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelman, Esty"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study property testing with incomplete or noisy inputs. The models we consider allow for adversarial manipulation of the input, but differ in whether the manipulation can be done only offline, i.e., before the execution of the algorithm, or online, i.e., as the algorithm runs. The manipulations by an adversary can come in the form of erasures or corruptions. We compare the query complexity and the randomness complexity of property testing in the offline and online models. Kalemaj, Raskhodnikova, and Varma (Theory Comput. `23) provide properties that can be tested with a small number of queries with offline erasures, but cannot be tested at all with online erasures. We demonstrate that the two models are incomparable in terms of query complexity: we construct properties that can be tested with a constant number of queries in the online corruption model, but require querying a significant fraction of the input in the offline erasure model. We also construct properties that exhibit a strong separation between the randomness complexity of testing in the presence of offline and online adversaries: testing these properties in the online model requires exponentially more random bits than in the offline model, even when they are tested with nearly the same number of queries in both models. Our randomness separation relies on a novel reduction from randomness-efficient testers in the adversarial online model to query-efficient testers in the standard model. 
    more » « less
    Free, publicly-accessible full text available February 11, 2026
  2. Linearity testing has been a focal problem in property testing of functions. We combine different known techniques and observations about Linearity testing in order to resolve two recent versions of this task. First, we focus on the online-manipulation-resilient model introduced by Kalemaj, Raskhodnikova and Varma (Theory of Computing 2023). In this model, up to t data entries are adversarially manipulated after each query is answered. Ben-Eliezer, Kelman, Meir, and Raskhodnikova (ITCS 2024) showed an asymptotically optimal Linearity tester that is resilient to t manipulations per query, but fails if t is too large. We simplify their analysis for the regime of small t, and for larger values of t we instead use sample-based testers, as defined by Goldreich and Ron (ACM Transactions on Computation Theory 2016). A key observation is that sample-based testing is resilient to online manipulations but still achieves optimal query complexity for Linearity when t is large. We complement our result by showing that when t is very large any reasonable property, and in particular Linearity, cannot be tested at all. Second, we consider Linearity over the reals with proximity parameter ε. Fleming and Yoshida (ITCS 2020) gave a tester using O(1/ε · log(1/ε)) queries. We simplify their algorithms and modify the analysis accordingly, showing an optimal tester that only uses O(1/ε) queries. This modification works for the low-degree testers presented in Arora, Bhattacharyya, Fleming, Kelman, and Yoshida (SODA 2023) as well, resulting in optimal testers for degree-d polynomials, for any constant d. 
    more » « less
    Free, publicly-accessible full text available January 13, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Linearity testing has been a focal problem in property testing of functions. We combine different known techniques and observations about Linearity testing in order to resolve two recent versions of this task. First, we focus on the online-manipulation-resilient model introduced by Kalemaj, Raskhodnikova and Varma (Theory of Computing 2023). In this model, up to t data entries are adversarially manipulated after each query is answered. Ben-Eliezer, Kelman, Meir, and Raskhodnikova (ITCS 2024) showed an asymptotically optimal Linearity tester that is resilient to t manipulations per query, but fails if t is too large. We simplify their analysis for the regime of small t, and for larger values of t we instead use sample-based testers, as defined by Goldreich and Ron (ACM Transactions on Computation Theory 2016). A key observation is that sample-based testing is resilient to online manipulations but still achieves optimal query complexity for Linearity when t is large. We complement our result by showing that when t is very large any reasonable property, and in particular Linearity, cannot be tested at all. Second, we consider Linearity over the reals with proximity parameter ε. Fleming and Yoshida (ITCS 2020) gave a tester using O (1/ε · log (1/ε)) queries. We simplify their algorithms and modify the analysis accordingly, showing an optimal tester that only uses O (1/ε) queries. This modification works for the low-degree testers presented in Arora, Bhattacharyya, Fleming, Kelman, and Yoshida (SODA 2023) as well, resulting in optimal testers for degree-d polynomials, for any constant d. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Meka, Raghu (Ed.)
    We study property testing with incomplete or noisy inputs. The models we consider allow for adversarial manipulation of the input, but differ in whether the manipulation can be done only offline, i.e., before the execution of the algorithm, or online, i.e., as the algorithm runs. The manipulations by an adversary can come in the form of erasures or corruptions. We compare the query complexity and the randomness complexity of property testing in the offline and online models. Kalemaj, Raskhodnikova, and Varma (Theory Comput. `23) provide properties that can be tested with a small number of queries with offline erasures, but cannot be tested at all with online erasures. We demonstrate that the two models are incomparable in terms of query complexity: we construct properties that can be tested with a constant number of queries in the online corruption model, but require querying a significant fraction of the input in the offline erasure model. We also construct properties that exhibit a strong separation between the randomness complexity of testing in the presence of offline and online adversaries: testing these properties in the online model requires exponentially more random bits than in the offline model, even when they are tested with nearly the same number of queries in both models. Our randomness separation relies on a novel reduction from randomness-efficient testers in the adversarial online model to query-efficient testers in the standard model. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  6. In a recent breakthrough, Kelley and Meka (FOCS 2023) obtained a strong upper bound on the density of sets of integers without non-trivial three-term arithmetic progressions. In this work, we extend their result, establishing similar bounds for all linear patterns defined by binary systems of linear forms, where “binary” indicates that every linear form depends on exactly two variables. Prior to our work, no strong bounds were known for such systems even in the finite field model setting. A key ingredient in our proof is a graph counting lemma. The classical graph counting lemma, developed by Thomason (Random Graphs 1985) and Chung, Graham, and Wilson (Combinatorica 1989), is a fundamental tool in combinatorics. For a fixed graph H, it states that the number of copies of H in a pseudorandom graph G is similar to the number of copies of H in a purely random graph with the same edge density as G. However, this lemma is only non-trivial when G is a dense graph. In this work, we prove a graph counting lemma that is also effective when G is sparse. Moreover, our lemma is well-suited for density increment arguments in additive number theory. As an immediate application, we obtain a strong bound for the Turán problem in abelian Cayley sum graphs: let Γ be a finite abelian group with odd order. If a Cayley sum graph on Γ does not contain any r-elique as a sub graph, it must have at most 2−Ωr(log1/16|Γ|)⋅|Γ|2 edges. These results hinge on the technology developed by Kelley and Meka and the follow-up work by Kelley, Lovett, and Meka (STOC 2024). 
    more » « less
  7. The online manipulation-resilient testing model, proposed by Kalemaj, Raskhodnikova and Varma (ITCS 2022 and Theory of Computing 2023), studies property testing in situations where access to the input degrades continuously and adversarially. Specifically, after each query made by the tester is answered, the adversary can intervene and either erase or corrupt t data points. In this work, we investigate a more nuanced version of the online model in order to overcome old and new impossibility results for the original model. We start by presenting an optimal tester for linearity and a lower bound for low-degree testing of Boolean functions in the original model. We overcome the lower bound by allowing batch queries, where the tester gets a group of queries answered between manipulations of the data. Our batch size is small enough so that function values for a single batch on their own give no information about whether the function is of low degree. Finally, to overcome the impossibility results of Kalemaj et al. for sortedness and the Lipschitz property of sequences, we extend the model to include t < 1, i.e., adversaries that make less than one erasure per query. For sortedness, we characterize the rate of erasures for which online testing can be performed, exhibiting a sharp transition from optimal query complexity to impossibility of testability (with any number of queries). Our online tester works for a general class of local properties of sequences. One feature of our results is that we get new (and in some cases, simpler) optimal algorithms for several properties in the standard property testing model. 
    more » « less
  8. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    We study the problem of robust multivariate polynomial regression: let p: ℝⁿ → ℝ be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (𝐱_i,y_i) ∈ [-1,1]ⁿ × ℝ that are noisy versions of (𝐱_i,p(𝐱_i)). More precisely, each 𝐱_i is sampled independently from some distribution χ on [-1,1]ⁿ, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most ρ < 1/2, and otherwise satisfies |y_i-p(𝐱_i)| ≤ σ. The goal is to output a polynomial p̂, of degree at most d in each variable, within an 𝓁_∞-distance of at most O(σ) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n = 1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(dⁿlog d), where the hidden constant depends on n, if χ is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(σ), and the run-time depends on log(1/σ). In the setting where each 𝐱_i and y_i are known up to N bits of precision, the run-time’s dependence on N is linear. We also show that our sample complexities are optimal in terms of dⁿ. Furthermore, we show that it is possible to have the run-time be independent of 1/σ, at the cost of a higher sample complexity. 
    more » « less
  9. We study the problem of robust multivariate polynomial regression: let p\colon\mathbb{R}^n\to\mathbb{R} be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R} that are noisy versions of (\mathbf{x}_i,p(\mathbf{x}_i)). More precisely, each \mathbf{x}_i is sampled independently from some distribution \chi on [-1,1]^n, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most \rho < 1/2, and otherwise satisfies |y_i-p(\mathbf{x}_i)|\leq\sigma. The goal is to output a polynomial \hat{p}, of degree at most d in each variable, within an \ell_\infty-distance of at most O(\sigma) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n=1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(d^n\log d), where the hidden constant depends on n, if \chi is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}\log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(\sigma), and the run-time depends on \log(1/\sigma). In the setting where each \mathbf{x}_i and y_i are known up to N bits of precision, the run-time's dependence on N is linear. We also show that our sample complexities are optimal in terms of d^n. Furthermore, we show that it is possible to have the run-time be independent of 1/\sigma, at the cost of a higher sample complexity. 
    more » « less